Unit Vector Math for 3D Graphics

By Jed Margolin

in this geometric modei there is an absolute Universe filled with Objects, each of which is free to
rotate and translate. Associated with each Object is an Orthonormal Matrix (i.e. a set of Orthogonal
Unit Vectors) that describes the Object's orientation with respect to the Universe. Because the Unit
Vectors are Orthogonal, the Inverse of the matrix is simply its Transpose. This makes it very easy to
change the point of reference. The Object may look at the Universe or the Universe may look at the

Ohiect. The Obiect may lock at another Obiect after the appropriate concatenation of Unit Vectors.
UJV\I[11N ij\l\.ll |||u‘y NN AL AL IV LD I \Ju Nl Al [N A ur/r/l Ur/l AL WU TwGALLN T ALV W VT TTL Vv vl

Each Object will always Roll, Pitch, or Yaw around its own axes regardless of its current orientation

without USIﬂg Euler angle functions.

| developed Unit Vector Math for 3D Graphics in 1978 in order to do a 3D space war game. 1978 was
before the PC, the 68000, and the DSP. As a result, floating point arithmetic was expensive and/or

slow. In fact, floating point was expensive and/or slow until comparatively recent times. Thus, some of
the material presented here emphasizes the use of 16-bit integer math.

N viarms v-v-\v\l\ﬂul Alvar~ o
A Very stripped aown
bit-slic

str
in a 2901

The first game to use the full implementation of Unit Vector Math was Star Wars (1983). The
calculations were done in the custom MSI processor (the Matrix Processor) using a simple state
machine controlling serial multipliers and adder/subtracters. Although the algorithms allowed each
object to have six degrees of freedom, it was decided that players might be freaked out by enemy TIE

Finhtare rnmina at tham 1incida dnwn en avarvnn

a8 wae rnNnc A tn ha mncethy rinhtcida 11in
CignMer's COMiNg av nicim upsiGe GOwn, S0 CSVeryOne was CONns

QI o
Al v WV vo IIIUOI.Iy Ilul Inoive ur.l.

When the project team was formed to do Last Starfighter i was asked about the Star Wars Matrix
Processor. | recommended they use something that was brand new in the world, the Texas
Instruments TMS32010 DSP, which | was starting to design into TomCat. That's what they used,
along with the Unit Vector Math. (Although | was not on the Last Starfighter project | did get to view
the closely guarded preview copy of the film where the CGI was in wireframe.)

The Unit Vector Math was used to its full effect in Hard Drivin' (1988), implemented in an Analog
Devices ADSP-2100 second generation DSP using 16-bit integer math. Analog Devices thought so
highly of our application that, for a time, they featured Hard Drivin' in their ads. Hard Drivin' was also
honored by its appearance on Plate 1.7 of Computer Graphics - Principles and Practices Second

Edition by Foley and van Dam.

When we added the AT&T DSP32C floating point DSP in Race Drivin' (1990) it was for the

modeling of the car dynamics; the graphlc s still done in the ADSP2100.

hysical

I am including with this article the source code and executables for two programs. Both are written for
Windows and are compiied using Microsoft Visuai C++. The first program (uvdemo) demonstrates the
use of Unit Vector Math to rotate objects. The second program (mjangle) produces a list of Magic
Angles. If you want to know what Magic Angles are, | guess you will have to keep reading.

DaAtntinne

NULAaLIvI IO
. Translations

independent Objects

. Summary of Transformation Algorithms
5. Projection
6. Visibility and lllumination
7. Demo Program for Unit Vector Math
8. Clipping
9. Polygon Edge Enhancement

10. Matrix Notations

11. What Is 1.00007?

12. Magic Angles - Sines and Cosines

el N

Rotations
The convention used here is that the Z axis is straight up, the X axis is straight ahead, and the Y axis
is to the right. Roll is a rotation around the X axis, Pitch is a rotation around the Y axis, and Yaw is a
rotation around the Z axis.

For a simple positive (counter-clockwise) rotation of a point around the origin of a 2-Dimensional

onana:

X'= X*COS(a)-Y*SIN(a)
Y'= X*SIN(a)+Y*COS (a)

See Fig. 1.
!f \lle \A/J
1. Simply sum the angies and rotate the originai points, in which case:
X"= X*COS (a+b)-Y*SIN (a+b)
Y"= X*SIN(a+b)+Y*COS (a+b)
2. Rotate X', Y' by angle b:

X"= X'*¥COS (b)-Y'*SIN(b)
Y"= X'*SIN(b)+Y'*COS (b)

See Fig. 2.

Fig. 1 Fig. 2

/N AN\ (XH’YH)

LK / \ (X,Y)

/\ M
2 l)x L - 1>x

X,Y) X,Y)

With the second method the errors are cumulative. The first method preserves the accuracy of the

it wwnrls ~tatin nA la avie

Al rlimata nfArt atahs A A ~Ff
UI IHII IGI LIUUI uu IGLCO ul 1wl Lul |a|.C|_y ISR LAV} r\o UI Ily IUI IULGI.IUI ID GI Uul AV] G OII IHIU dAAlID. VVI ICI I G DCI ICD UI
rotations are done together around two or three axes, the order of rotation makes a difference. As an
exampie: An airpiane aiways Rolis, Piiches, and Yaws according to its own axes. Visuaiize an
airplane suspended in air, wings straight and level, nose pointed North. Roll 90 degrees clockwise,
then pitch 90 degrees "up". The nose will be pointing East. Now we will start over and reverse the
order of rotation. Start from straight and level, pointing North. Pitch up 90 degrees, then Roll 90
degrees clockwise, The nose will now be pomtrng straight up, where "up" is referenced to the ground.

iust nretend vour hand is t

If vou have trouble visualizin
o I Al 1S r/ N lNsl INA y Ilul INA 1w

H yvu 1iQvo uvuwi

,,,,,,,,,,, £ S TN DO

This means that we cannot simply keep a running sum of the angles for each axis. The standard
method is to use functions of Euler angles. The method to be described is easier and faster to use
than Euler angle functions.

Although Fig. 1 represents a two dimensional space, it is equivalent to a three dimensional space
where the rotation is around the Z axis. See Fln 3. The equations are:

MG g — QAIS. OTT 1 MU

N ,«v\ T
rgquation i

Z'= Z*COS (ya)-X*SIN(ya) Fquation 2
X'= Z*SIN(ya)+X*COS(ya)

See Fig. 4.

and
Y'= Y*COS(xa)-Z*SIN(xa) Egquation 3
Z'= Y*SIN(xa)+Z*COS (xa)

See Fig. 5.

Fig. 3 Fig. 4 Fig. 5

zZ Y X

S S S

From the ship's frame of reference it is at rest; it is the Universe that is rotating. We can either change
the equations to make the angles negative or decide that positive rotations are clockwise. Therefore,
from now on all positive rotations are clockwise

X'= X*[COS(ya) *COS(za)] +
Y*[-COS (ya) *SIN(za)] +
Z*[SIN(ya)]l

Y'= X*¥[SIN(xa) *SIN(ya) *COS (za) +COS (xa) ¥*SIN(za)] +
Y*[-SIN(xa) *SIN(ya) *SIN(za)+COS (xa) *COS(za)] +

Z* r_QT’NI' lva\ *CNQ (~a) 1

S LiN\aay WSO NYSGAT]

X*[-COS (xa) *SIN(ya) *COS (za) +SIN(xa) *SIN(za)] +
Y* [COS (xa) *SIN(ya) *SIN(za) +SIN (xa) ¥*COS(za)] +
Z* [COS (xa) *COS (ya)]

NI
Il

(The asymmetry in the equations is another indication of the difference the order of rotation makes.)
The main use of the consolidated equations is to show that any rotation will be in the form:

[Pe i LISV GLT M GL WS L= N

A WAL M7 Mk
AL TNATDATLITUOUA"

Ay*X+By*Y+Cy Z
Az*X+Bz*Y+Cz*

I
N

N = M
Il

If we start with three specific points in the initial, absolute coordinate system, such as:

Px = (1,0,0
1,0

Dy =
e 4

pz = (0,0,1

I
o~
(@]

after any number of arbitrary rotations,

Px'= (XA,YA,ZA)
Py'= (XB,YB,ZB)
Pz'= (XC,YC,ZC)

By inspection:

XA = Ax YA = Bx ZA = Cx
YR = Axr VR — DBx7r 7R — (Mxr
AD = AY 15 = DY 45 = UY
XC = Az YC = Bz ZC = Cz

Therefore, these three points in the ship's frame of reference provide the coefficients to transform the
absolute coordinates of whatever is in the Universe of points. The absolute list of points is itself never
changed so it is never lost and errors are not cumulative. All that is required is to calculate Px, Py,

and Pz with sufficient accuracy. Px, Py, and Pz can be thought of as the axes of a gyrocompass or 3-

avie etahilizad nlatfarm in the chin +h9 is alwavs criented in the original absolute coordinate system
CANIWD \Jkuullll_uu rJlullullll i LN i (N L= 8 |\J ul\lvu_y\) NJLINALIANANA T T LN VI |s|| |E‘|7 CAN IV I WU N AN \J]\Jk\llll

Translations

Translations do not affect any of the angles and therefore do not affect the rotation coefficients.
Translations will be handled as follows:

iere the origin of the a
shi p |entat|on), he

DAt an Ll mvm | ~1.
~datrier uidri KBB[.) rack
of view (it changes with
coordinate system.

tra ¥ S R
1 I

('D

Oorw
the

To do this requires finding the inverse transformation of the rotation matrix. Px, Py, and Pz are
vectors, each with a length of 1.000, and each one orthogonal to the others. (Rotating them will not

change these propertles.) The inverse of an Orthonormal matrix (one composed of orthogonal unit

nA AAalhimne

varntare lilka Dy Dyv anA D- Ao o
r UWO Al iu CUIULTITTO.

\
VECLOIs 1ike r'X, ry, anG rZ) is

Therefore, for X, Y, Z in the Universe's reference and X', Y', Z' in the Ship's reference:

|_X'-| |_Ax Bx CX-I |_X-| I_X-I I_Ax Ay AZ-I |_X-|
Y| =J]Ay By Cy | X |Y and Y| =| Bx By Bz Y’
Z'| Az Bz Cz | |Z| |Z| Cx Cy Cz |Z'|

he ship's X unit vector (1,0,0), the vector which, according to the ship is straight ahead, transforms
to (Ax,Bx,Cx). Thus the posmon of the ship in terms of the Universe's coordinates can be determined.
The complete transformation for the Ship to look at the Universe, taking into account the position of
the Ship:

For X,Y,Z in Universe reference and X', Y', Z' in Ship's reference:

-~ A - - -
X'l |Ax Bx Cxl |X—XT|
Y'!l =l Ay By Cy! X Y-YT

I_Z'J I_Az Bz CZJ I_Z - ZTJ

Independent Objects

To draw objects in a polygon-based system, rotating the vertices that define the polygon will rotate
the polygon.

The object will be defined in its own coordinate sys em (the object "library") and have associated with

it A ent Af 1init varntAare Tha nhinrt ie rntatad hy rata ~ite H
nnaocuL Ul Uil voulul o, 111C UUJCLIL 19 1Tvialcu Uy |ULGL|| |U o uliii

<
)
s
®
o)

position in the absolute Universe.

When we want to look at an object from any frame of reference we will transform each point in the
object's library by applying a rotation matrix to place the object in the proper orientation. We will then
apply a translation vector to place the object in the proper position. The rotation matrix is derived from
both the object's and the observer's unit vectors; the translation vector is derived from the object's

pnelhnn the observer's hf\Ql+If\h and the nhenr\/or S unit vectors.

i [T VO O Uil VO

Sy R, PR T, o

The SlmpIeS[frame of reference from which to view an ODJGCI is in the Universe's reference at \U 0,0 U)
looking along the X axis. The reason is that we already have the rotation coefficients to look at the
object. The object's unit vectors supply the matrix coefficients for the object to look at (rotate) the
Universe. The inverse of this matrix will allow the Universe to look at (rotate) the object. As discussed

previously, the unit vectors form an Orthonormal matrix; its inverse is simply the Transpose. After the
thpr‘t is rotated, it is translated to its an!’rmn {|1q nnt:!’rmn ar*r*nrdlnn to the U lnl\/prep\ and nmlpr*’rrar'l

Projection is dlscussed in greater detail later.

A consequence of using the Unit Vector method is that, whatever orientation the object is in, it will
always Roll, Pitch, and Yaw according to ifs axes.

For an object with unit vectors:

and absolute position [XT,YT,ZT], and [X,Y,Z], a point from the object's library, and [X',Y',Z'] in the
Universe's reference.

The Universe looks at the object
— -— — - — -— — -
|X' |AXBXCX| |X| |XT|
A V4] — A n e x7 [] wm
Y =] Ay by Cyj X Y -T Y 1
VA Az Bz Cz Z 7T
L = | B -l — -l - -l

For two ships, each with unit vectors and positions:

Ax1l Bxl G
| Ayt Byt cyt | Ship 1 Unit Vectors
(XT1,YT1,ZT1) Ship 1 Position

[Ax2 Bx2 cx2 |
| Ay2 By2 Cy2 | Ship 2 Unit Vectors

(XT2,YT2, ZT2) Ship 2 Position

Transpose (Inverse) of
Ship 2 Unit Vectors

RS

(X,Y,Z) in Ship 2 library, (X',Y',Z") in Universe Reference, and (X",Y",Z") in Ship 1 Reference

Universe looks at ship 2:

[x]1 [ax Bx cx’] [x]
|Y'|=|Ay2By2Cy2| X |Y|+|YT2|
- 2] et

LLILJ

A m W A N A

LL’ | Az2 Bz2 Cz2 |

Ship 1 looks at the Universe looking at Ship 2:

rx"-l Ax1 Bx1 Cxi X' - XT1
Y'"| = | Ayl Byl Cyl| X |Y'-YT1 EQUATION 4
|_ "J | Azl Bzl Czl _ | 7' -ZT1 |

Ayl Byl Cyl1| X |Y | - | Ay1 By
A7z1 Rz1 (71 A

A REs A AFEA L7 P § > I Fa V75 § Z Z
h— - h— =3

Ax1 Bxl Cxl | x| [Axt Bx1 cx1] [xT
IOyl
J

Expand
rAxl Bx1 CXI-I rX'-I rAxl Bx1 CXI-I / rAXZ Ay2 AZZ-I rX-l rXTZ-I \
| Ayl Byl Cy1| x |Y| = | Ayl Byl Cy1| X% (Bx2 By2 Bz2 | x Y| +]|y
Azl Bzl Cyl VA Azl Bzl Cyl Cx2 Cy2 Cz22 Z 7712
L Y L~ d L Y \ L J . L=d L= d
Using the Distributive Law of Matrices:
Faxt Bxt ox1] [[axz ayz az] [x7)\ [[Ax1 Bx1 ox1] [xT12]
= | Ayl Byl Cy1 | x | | Bx2 By2 Bz2 | x | Y |) + | Ayl Byl Cy1 | X | vy12 |
Azl Bzl Czl Cx2 Cv2 Cz2 V4 Azl Rz1 Cz1 7712
L J J J L=d L L= 1
Using the Associative Law of Matrices:
[Taxt Bt el [axz a2 a2\ [X] [Ax1 Bx1 Cx1 | [x12]
= || Ayt By1 cy1 | x | Bx2 By2 Bz2 , x |Y | + |Ay1 Byl Cy1 | X | yT2
Azl Bzl Czl Cx2 Cv2 Cz2 Z Azl Rzl Cz1 7T2
\L J L y J L~d L L=
Substituting back into Equation 4 gives:

Mol [Taxt Bxt o] [ax a2 a2l [X] ["Ax1 Bx1 Cx1] Mx12]
Y"|=(|Ay1By1Cy1|X Bx2 By2 Bz2)X|Y| + |Ay1By1Cy1| X | T2|

LZ"J \LAZI Bzl CziJ LCXZ Cy2 CZZJ l LZJ LAzi Byl CziJ LZTZJ

r.oo 1 g
Ax1 Bx1 Cx1 X111
- Ayl Byl Cyl | X |YT1
LAzl Bz1 CzlJ LZTIJ
Therefore:

r‘r!!j IrA - 1 mnD__1 ﬂ,,"j rl, ~ A _ " A'if\j \ rv1 A - e &l Pal 11 r‘rmf\ ‘7rrw—l
A AX1 DbX1 UXI1 AXL AYL ALL PaN AX1 DBXI1 (X1 AlL=-All
Y" | = (Ayl Byl Cyl | x | Bx2 By2 Bz2 l X |Y| + |AyiByrcyi| X |YT2-vYTI

LZ" | \LAZI Bzl Czl | LCx2 Cy2 CZ‘JI LZ] | Azl Byl Czl | L£712-771 |

Now let:
r 2 - —~ 1 r a - ww e N - 1 r A ~ A ~ A ﬁ\j
| Ax Bx Lxl | Axi Bxl Cxi | | Ax2 Ay2 Az2 |
Ay By Cy| = | Ayl Byl Cyl | X | Bx2 By2 Bz2
| Az Bz Cz | | Azt Bzt €1 | | cx2 Cy2 C22 |

This

3
-

ip 1's frame of reference. This

atr|x represents the orientation of Ship 2 according to S
nip

A once Der u TaYe L=1 7= nf

A kA A
O 0€ Goine on Ily Ulive pel upuailc v

N

Q
O

Also let
|_XT-| [[Axt Bx1 x| |_XT2 XT1-|
Y | = | Ayl Byl Cyl | X | YT2-YTI |
7T Azl Byl Czl 7T2 - ZT1
[| J e | L -l

(XT,YT,ZT) is merely the position of Ship 2 in Ship 1's frame of reference.
This also needs to be done only once per update of Ship 2.

Therefore the transformation to be applied to Ship 2's library will be of the form:

xl [Ax Bx cx1 Nx1 [Ixrl
Y" —|AyByCy| X |Y| -|-|YT|

|z |AzBzcz| |z]| |zr]

Therefore, every object has six degrees of freedom, and any object may look at any other object.

Summary of Transformation Algorithms

Define Unit Vectors:
[Px] = (Ax,Ay,Az)
[Pyl = (Bx,By,Bz)
[Pz] = (Cx,Cy,Cz)

Initialize:
Ax =By =z =1.000

Ay=Az=Bx=Bz=Cx=Cy=0

If Roll:
Ay' = Ay*COS(xa) - Az*SIN(xa)
Az' = AV*QIN(XQ\ + Az*(’ﬂQ(xa\

Do — D 2MNQAlMoa) D2 QTN wa)
DYy — DY _,UD\AA} DL LN aa)

Bz' = By*SIN(xa) + Bz*COS(xa)

Cy' = Cy*COS(xa) - Cz*SIN(xa)
Cz' = Cy*SIN(xa) + Cz*COS(xa)

If Pitch:

A — Al MNQlva) . Ax%QIN{(va)
Vs V7 ALTUUS\Ya) - AXTSuNwyay

Ax' = Az*SIN(ya) + Ax*COS(ya)

Bz' = Bz*COS(ya) - Bx*SIN(ya)
Bx' = Bz*SIN(ya) + Bx*COS(ya)

Cz' = Cz*COS(ya) - Cx*SIN(ya)
Cv pv*SIN{‘IQ\ —+ FY*COS{“{&}
\Ylaw...
Ax' = Ax*COS(za) - Ay*SIN(za)
Ay' = Ax*SIN(za) + Ay*COS(za)

e
IT

Bx' = Bx*COS(za) - By*SIN(za)
Ry' = Bx*SIN(za) + By*CQS(za)

<! EY Y A YNV SSFQN
Cx' = Cx*COS(za) -

Cy®
Cy' = Cx*SIN(za) + Cy

TN -\
N{za)

*SI
*COS(za)
(‘za', 'ya’, and "xa" are incremental rotations.)

The resultant unit vectors form a transformation matrix.

11

For X, Y, Z in Universe reference and X', Y', Z' in Ship's reference

The ship's x unit vector, the vector which according to the ship is straight ahead, transforms to
(Ax,Bx,Cx). For a ship in free space, this is the acceleration vector when there is forward thrust. The
sum of the accelerations determine the velocity vector and the sum of the velocity vectors determine
the position vector (XT,YT,ZT).

For two ships, each with unit vectors and positions:

[[Ax1 Bx1 cx1 |
| Ayl Byl Cyl | Ship 1 Unit Vectors
LAZI Bzl Czi J

(XT1, YT1,ZT1) Ship 1 Position

Ship 2 Unit Vectors

yl Byl Cy

rAxl Bxl Cx
| A

Azl Bzl Czl
| .

—

| I
s
ol
] -

| I |

(X)Y,Z) in Universe
(X, Y",Z") in Ship 1 frame of reference

12

Ship 1 looks at Ship 2:

[ax Bx x| [ax Ba ca]l [ax2 Ay2 az2]
| Ay By Cy| = [Ayl Byl Cy1 | x | Bx2 By2 B2 |
LAz Bz CzJ LAzl Bzl Czl J | Cx2 Cy2 LZZJ

(X,Y,Z) in Ship 2 library
(X,Y',Z") in Ship 1 reference

13

Projection

There are two main types of projection. The first type is Perspective, which models the optics of how
objects actually look and behave; as objects get farther away they appear to be smaller. As shown in
Fig. 6, X' is the distance to the point along the X axis, Z' is the height of the point, Xs is the distance
from the eyepoint to the screen onto which the point is to be projected, and Sy is the vertical
displacement on the screen. Z'/X' and Sy/Xs form similar triangles so: Z'/X'=Sy/Xs,therefore
Sy=Xs*Z'IX". Likewise, in Fig. 7, Y'/X'=Sx/Xs so Sx=Xs*Y'/X' where Sx is the horizontal displacement

nn the erraan
N LI vl vl .

Fig. 6 Y Fig. 7
S (TN WN A (V' X"
N\ /\LJ’A} 7N /‘\1 oin)
T .
AN AN
7 > > X
Xs Xs
X' X'

I Py - Py —_~L o | P

However, we still need to fit Sy and Sx to the monitor display coordinates. Suppose we have a screen
that is 1024 by 1024. Each axis would be plus or minus 512 with (0,0) in the center. If we want a 90
degree field of view (which means plus or minus 45 degrees from the center), then when a point has
Z'/X'=1 it must be put at the edge of the screen where its value is 512. Therefore Sy=512*Z'/X". (Sy is
the Screen Y-coordinate).

Therefore:
Qo — WxZV/W Sv is the vertical coordinate on the displa
Dy LAY SN O_y > UIC Vv L Ldl COULTUILLLALT UIIL LI Ulbl}la)’
Sx =K*Y'/X' Sx s the horizontal coordinate on the display

K is chosen to make the viewing angle fit the monitor coordinates. If K is varied dynamically we end
up with a zoom lens effect.

The second main type of projection is Orthographic, where the projectors are parallel. This is done by
ignoring the X distance to the point and mapping Y and Z directly to the display screen. In this case:

Sy = K*Z' Sy is the vertical coordinate on the display

Sx =K*Y' Sxis the horizontal coordinate on the display K is chosen to
make the coordinates fit the monitor.

14
Visibility and lllumination

After a polygon is transformed, the next step is to determine its illumination value, if indeed, it is
visible at all. Associated with each polygon is a vector of length 1 that is normal to the aui"faCG of the
polygon. This is obtained by using the vector crossproduct between the vectors forming any two
adjacent sides of the polygon. For two vectors V1i=[x1,y1,21] and V2=[x2,y2,z2] the crossproduct
V1*V2 is the vector [(y1*z2-y2*z1), -(x1*z2-x2*21), (x1*y2-x2*y1)]. The vector is then normalized by
dividing it by its length. This gives it a length of 1. This calculation can be done when the database is
generated, becoming part of the database, or it can be done during program run time. The tradeoff is

between data base size and program execution time. In any event, it becomes part of the transformed
data

UGG,

[T DR T L

After the pOIngH and its normai are transformed to the observer's frame of rererence we neea 1o
calculate the angle between the polygon's normal and the observer's vector. This is done by taking
the vector dot product. For two vectors V1=[x1,y1,z1] and V2=[x2,y2,z2], V1 dot V2 =
length(V1)*length(V2)*cos(a) and is calculated as (x1*x2+y1*y2+z1*z2) . Therefore:

cos(a) =

For a perspective projection the dot product is between the user vector P(xt,yt,zt) and the poiygon
normal vector, where xt, yt, zt are the coordinates of a polygon vertex in the observer's frame of
reference.

In Fig. 8, the angle between the polygon face normal and the vector from the observer to a point on
the face is less than 90 dearees and the face will not be visible. For anales less than 90 dearees the

ST YV MT g el & ST Sindio. Yiee IToS YV MT g oo

cosine is positive.

In Figure 9, we are looking at the edge of the face so the angle between the polygon face normal and
the vector from the observer to a point on the face is 90 degrees.

In Figure 10, the angle between the polygon face normal and the vector from the observer to a point

on the face is greater than 90 degrees and the face is definitely visible. For angles greater than 90
degrees the cosine will be negative.

Fig. 8 Fig. 9 Fig. 10

g
e

Z \
. &
A
\O
(=}
(=%
(e°]
(1]
o
”->
Il
\&
=1
(=%
le"]
1) '/
N
»\>

-
P

15
A cosine that is positive means that the polygon is facing away from the observer. Since it will not
be visible it can be rejected and not subjected to further processing. The actual cosine value can be
used to determine the brlghtness of the polygon for added realism. If a point is to be only accepted or

AAAAA tand tha A~t Arad ~alanilatinm Anrm Armit tha nAarmmalisatinn otan l\lv\t\l\ it Aans nat affant tha i ~F

IUJU\.:LUU LUic Uuult PIUUUL;L CaiCuiauon Cain Gimit ine NormaiiZation sie M Siive it GGes Not anecl ine SiYll Vi

the result.

For an orthographic projection the dot product is between the user vector P(xt,0,0) and the polygon
normal vector and we can just use the X component of the transformed Normal Vector.

| have written a program to demonstrate the Unit Vector Math for 3D Graphics using OpenGL. It was
compiled with Microsoft Visual C++ 6.0 and runs under Windows 9X. Support for OpenGL is built into

Windows 9X. You don't have to install anything or screw around with the Operating System. All you
do is run the program.

My preference is that you examine the code until you understand it, then compile it yourself before
running it. (Visual C++ 6.0 contains the OpenGL files you need to Complle the program.)

| adapted the framework for the program from Jeff Molofee's excellent OpenGL tutorial available at
http://nehe.gamedev.net .

nd

F

Given the probiems with viruses these days, i aiso suggest you downioad it oniy from my Web site
(www.jmargolin.com).

Download uvdemo.zip here.

Clippin

Now that the polygon has been transformed and checked for visibility it must be clipped so it will
properly fit on the screen after it is projected. When using a perspective projection there are six
clipping planes as shown in the 3D representation shown in Fig. 11. The 2D side view is shown in

Fig. 12, and the 2D top view is shown in Fig. 13.

Fig. 11 Xmax

mi -L\All\ Xmin |L\A|l\

TN A e N

As shown in Fig. 14 and Fig. 15, clipping a polygon may result in the creation of additional polygon

o

airAdAn i Al i iadk A AR AN b daA A A s A H L R R R T S T TN
SlUCco wilull TSl Ve auucu WU UIc puUlyyull UcoUHpuull SCriL WU Uic pulyyull uiospiay 1uutirice.

Fig. 14 Fig. 15

AN \ N
\V 7

17

Polygon Edge Enhancement

To prevent a polygon from blending in with its neighbors in a system with a limited number of bits per
pixel, polygons can be drawn so that its edges are a different coior or shade from its interior. An
example of this is shown in Fig. 16.

Fig. 16

Matrix Notations

The matrix notation for:

X' =Ax ¥* X+ Bx *Y + Cx * Z
Y'" =Ay * X + By * Y + Cy * Z
Z' = Az * X + Bz * Y + Cz * Z
is
'I -~ -
| ABC| |X|
;/\‘R‘rp \Y%
L_‘JU_/
J 2 Bz

2
N

or
<
o
N
I—

R
p

p
-
b
L

X
’

—
P!
S
P!

<
@)
N

and would yield the same resulit.
The reason is that for matrices A, B, and C
(A*B)Transpose = (B Transpose) * (A Transpose)

Therefore if C=A*B then (C Transpose) = (B Transpose) * (A Transpose)

[x' v z']
L |

EX Y Zj is the transpose of

| I

r

19

and
|-AX Ay Az-l I-Ax Bx Cx-l
| Bx By Bz | is the transpose of Ay By Cyl
Fv p‘, F A’T DW F’T

The form used by Conventional Computer Graphics is easier to type but the form | use retains a
closer correspondence between the orientation of the matrix coefficients and that of the original
equations.

Matrix notation is, after all, only a shorthand for representing simultaneous equations.

For:

F.. o ~1 F. s nc 1 I'. A A A
AX bBbX (X AX1l bxl (Xl L AYZz AZZ
|AyByC_y| =|Aa1B_1C1|X| Bx2 By2 Cz2
| Az Bz Cz | | Azt Bzt ca1 | [Cx2 Cy2 €22 |

Ax = Ax1*Ax2 + Bxl*Bx2 + Cxl*Cx2
Ayl*Ax2 + Byl*Bx2 + Cyl*Cx2
Az = Azl1*Ax2 + Bzl*Bx2 + Czl*Cx2

2
]

Bx = Ax1*Ay2 + Bx1l*By2 + Cx1*Cy2

By = Ayl*Ay2 + Byl*By2 + Cyl*Cy2
Bz = Az1*Ay2 + Bzl*By2 + Czl*Cy2
Cx = Ax1*Az2 + Bxl*Bz2 + Cx1*Cz2
Cy = Ayl*Az2 + Byl*Bz2 + Cyl*Cz2

Cz = Azl*Az2 + Bzl*Bz2 + Czl*Cz2

PV O N

In the following discussion, the numbers are more or less in hexadecimal unless otherwise indicated.

We need to be able to represent 1.0000 because all of the matrix coefficients have values between -
1.0000 and 1 ﬂﬂOﬂ and we need to be able to mt |Ihn|\/ 1.0000 *1.0000 and nnf an answer of 1 0000

VU Qi VWO 1IDTU (VU WO QiT WU TTHTuvip Vv Qi QUi QISWoI VI avvwvy,

otherwise the unit vectors will deteriorate very qwckly Since we are doing flxed pomt arithmetic, one

Lo —d Ll

llllglll think that the Ullldly pUIlll. is Illldgllldly and can be put wherever we want. That is almost true.

If we do 16 bit two's complement integer multiplication the largest positive number that can be
represented is 7FFF (8000 is negative). We might therefore be tempted to let 7FFF represent 1.0000
. Ininteger multiplication 7FFF * 7FFF = 3FFF0001 . Since we want to end up with the same number
that we started with, we could take the most significant word and call it 3FFF.0001

20
But then 1.0000 * 1.0000 would not equal 1.0000 . And it can't be fixed with a shift, either. Shifting
left gives us 7FFE.0002 . Now we have 7FFF * 7FFF = 7FFE . It's almost right and might be ok if the
errors didn't accumulate as we rotated the unit vectors.

The next choice is 4000 . 4000 * 4000 = 10000000. Using the most significant word gives us

1000.0000; shifting left twice produces 4000.0000 . (in the Star Wars game the "shift left twice" was
|mplemented as two fewer clock cycles in the serial multiplier.)

As a result, 4000 will represent 1.0000 and 4000 * 4000 will yield 4000.

Sines and Cosines 1.0000 = 16384D so that Sin(a) is actually 16384.D * Sin(a). For example
Sin(0.89525 degrees) is really 16384 * Sin(0.89525) = 256.D which is 0100 Hex. Cos (0.89525.D
degrees) is actuaily 16384 * Cos (0.69525.D) = 16382.D = 3FFE Hex

We are still free to choose different binary points for other purposes.

For example: 4000 * 4000 = 4000 can be interpreted as 4000 (miles) * 4000 (one) = 4000 (miles).
Note that 1/2 of one = 2000 so that 4000 (milpe\ * 2000 (nnp hnlf\ 2000 (milpe\ Instead of 4000
miles it could have been 4.000 or 40.00 mlles Or it could have been feet or mches or meters or

.'-IA.AA.A ~ [P

furlongs or lightyears.

Magic Angles - Sines and Cosines

The key to being able to use 16 bit fixed point arithmetic for the unit vector rotations (where errors will
accumulate) is that there are angles whose sines and cosines can be accurately represented as

binary fractions.

One example is 0.8952 Degrees which was used in the previous example. The number of good
angles is limited but the alternative is to use floating point and/or more bits of precision.

| found the first few Magic Angles using an HP35 calculator. In the early 1980s, Doug Snyder wrote a
Fortran program to run on our VAX-11/780. | modified his program to format the output to the form |

wanted. Much later, | rewrote it using Borland Turbo C to run under DOS. Recently, | adapted it to run

PO V. Y HP R P P P N . P NP P ey) PO . M e e « B N HP

as a vvinaows L;UIIDUIB prlibdliUll bUIII[JiIBU Wllll IVIIbI UbUIl. VIbUdI b"“"
Here is a sample of the output.

16-bits 0x4000 = 16384

Magic Angles Angular r Limit = 0.005000 %

COS SIN ISINE ANGLE(deg) %Error(deg/deg) %Magnitude Error
16382 255992 256 0.89525642 0.0030521 -0.0000007
16380 362.017 362 1.26609665 0.0045790 +0.0000022
16375 542983 543 1.89919328 0.0030537 -0.0000034
16354 991.030 991 3.46780721 0.0030074 +0.0000110
16350 1054.967 1055 3.69183785 0.0031041 -0.0000129
16334 1279.023 1279 4.47737570 0.0018070 +0.0000110
16322 1423 000 1424 4 98609928 0.0000989 -0.0000007

16319 1457.976 1458 5.10538374 0.0016273 -0.0000129

21

16305 1606.994 1607 5.62880539 0.0003496 -0.0000034
16301 1647.075 1647 576966484 0.0045495 +0.0000458
32-bits 0x40000000 = 1073741824
Magic Angies Angular Error Limit = 0.000500 %
COS SIN ISINE ANGLE(deg) %kError(deg/deg) %Magnitude Error
1073741823 46340.950 46341 0.00247279 0.0001079 -0.0000000
1073741822 65536.000 65536 0.00349706 0.0000000 +0.0000000
1073741821 80264.880 80265 0.00428301 0.0001497 -0.0000000
1073741820 92681.900 92682 0.00494559 0.0001080 -0.0000000
1073741819 103621.514 103622 0.00552934 0.0004688 -0.0000000
1073741818 113511.682 113512 0.00605709 0.0002805 -0.0000000
1073741817 122606.629 122607 0.00654240 0.0003026 -0.0000000
1073741816 131072.000 131072 0.00699412 0.0000002 +0.0000000
1073741815 139022.850 139023 0.00741838 0.0001081 -0.0000000
1073741814 146542.951 146543 0.00781966 0.0000337 -0.0000000
Since Windows ungraciously erases the output as soon as the program ends, the best way to run it is
under Win9x DOS. (Yes, you can call a Windows Console Application from DOS.) You can also

redirect the output to a file. Just run: mjangie.exe >output.txt

Download mjangle.zip here.

The smallest Magic Angle using 16-bit integers is 0.636 degrees, which produces an incremental
rotation which is too large for a first person game. For Star Wars, Greg Rivera came up with the

method of using Magic Tics.
In this method, each object has two sets of Unit Vectors: the Primary Set and the Working Copy.

The Working Copy is rotated by smaller, non-magic angles (Tics) until they add up to a Magic Angle.
At that point the Primary Set is rotated by the Magic Angle and then the Primary Set is copied to the
Working Set.

Q Time Amml camma ol laWaY=teTe)
o 1 Ibb Bdbll repi Bbellllllg U.UooJY

AATLL I\IIA..: = L.

With Magic Tics, the Magic Angle o
degrees, and a running sum is kept o

—h R
%)
T Q)
(e))
(e}
(O
«
(O
[0
(72
)
e
<.
(e}
()]
[eX
)

TICS for each axis.

1. If the Tic sum is greater than or equal to 78, the Primary Set of Unit Vectors is rotated by 4.986
degrees and the Tic sum is decremented by 78. The Primary Set is then copied to the Working Set.

A QRAI7Q*1 /1— N QOK Annrance whirh i

[=3 Ay
V.OUU UTYITTO wilivl i 1o

Ananrane and tha Tir ci1im ie Aarramantad hvy 14 \
UUHIUCD Al UIT 11V OUlll 1O UTUITIIHITI ILCU Uy 1=r. \Aw |

Magic Angle). The Primary Set is then copied to the Working Set.

2. If the Tic sum is greater than or equal to 14, the Primary Set of Unit Vectors is rotated by 0.895
A un nAanA
\'-r JOVIT O 1T a < HUUU

3. The Working Set is then rotated by any leftover Magic Tics.

4. Negative values are handled in a similar manner.

Qo n
Q
<
Q
>
o
(@]
—
w
(0]
[ON0)
Q
-]
<
Q.
0]
—
0]
=]
(@]
® ¢
—
6(
3
_h
l—l‘-
0
o =
C
3
~—
<(D
()
Q
—
(@]
)
w
o
(@]
(@]
o
=
(@]
e
-~
®
=)
0]
Q O

22

sure what Max and Step han'P used in Hard Drivin'/Race Drivin'. They may have used Magic

not at Max ar |
Tics. There was some discussion of periodically re-normalizing and re-orthogonalizing the Unit
ver

1iead wiao varns affantiva VA aanm Arviva Llard Nrivuyin' I Dana NMNenvanm! all Aav am
dall uay aitl

—+
)_

IIUy used was vei ICULLVT. TUU Lall Ullive Tialu vliviii/maoco Ul ivill

any deterioration of the Unit Vectors. (Good work, Max and Stephanie.)

(D B

not se

In a 32-bit system the smallest Magic Angle is 0.00247279 degrees and the number of Magic Angles
is very large, so these methods would probably not be necessary.

June 2, 2601 (Revised 6/8/2001, 6/11/2005)

