UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov | APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO. | CONFIRMATION NO. | |---------------------|-----------------------------|----------------------|---------------------|------------------| | 11/736,356 | 04/17/2007 | Jed Margolin | | 3649 | | 23497
JED MARGOL | 7590 09/01/201
IN | 0 | EXAM | IINER | | 1981 EMPIRE | OAD | | MANCHO, RONNIE M | | | RENO, NV 89521-7430 | | | ART UNIT | PAPER NUMBER | | | | | 3664 | | | | | | | | | | | | MAIL DATE | DELIVERY MODE | | | | | 09/01/2010 | PAPER | Please find below and/or attached an Office communication concerning this application or proceeding. The time period for reply, if any, is set in the attached communication. | | Application No. | Applicant(s) | | | | |---|--|--|--|--|--| | | 11/736,356 | MARGOLIN, JED | | | | | Office Action Summary | Examiner | Art Unit | | | | | | RONNIE MANCHO | 3664 | | | | | The MAILING DATE of this communication ap
Period for Reply | pears on the cover sheet with the c | correspondence address | | | | | A SHORTENED STATUTORY PERIOD FOR REPL WHICHEVER IS LONGER, FROM THE MAILING Description of time may be available under the provisions of 37 CFR 1. after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period Failure to reply within the set or extended period for reply will, by statut Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b). | DATE OF THIS COMMUNICATION 136(a). In no event, however, may a reply be tind will apply and will expire SIX (6) MONTHS from te, cause the application to become ABANDONE | N. nely filed the mailing date of this communication. D (35 U.S.C. § 133). | | | | | Status | | | | | | | 1) ☐ Responsive to communication(s) filed on 17 A 2a) ☐ This action is FINAL . 2b) ☐ This action is FINAL . 3) ☐ Since this application is in condition for allowed closed in accordance with the practice under | is action is non-final.
ance except for formal matters, pro | | | | | | Disposition of Claims | | | | | | | 4) Claim(s) 1-14 is/are pending in the application 4a) Of the above claim(s) is/are withdra 5) Claim(s) is/are allowed. 6) Claim(s) 1-14 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/o Application Papers 9) The specification is objected to by the Examin 10) The drawing(s) filed on is/are: a) accompanion and applicant may not request that any objection to the Replacement drawing sheet(s) including the correction. | awn from consideration. or election requirement. er. cepted or b) □ objected to by the I e drawing(s) be held in abeyance. See | e 37 CFR 1.85(a). | | | | | 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. | | | | | | | Priority under 35 U.S.C. § 119 | | | | | | | 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some color None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. | | | | | | | Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 4/2007. | 4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal F 6) Other: | ate | | | | Application/Control Number: 11/736,356 Page 2 Art Unit: 3664 ## **DETAILED ACTION** ## Claim Rejections - 35 USC § 103 - 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action: - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made. - 2. Claims 1-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Margolin (5904724) in view of Duggan et al (US 2005004723). Regarding claim 1, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) discloses a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: - (a) a ground station 400 (fig. 1&4) equipped with a synthetic vision system (figs. 1&3; col. 4, lines 1 to col. 5, lines 67); - (b) an unmanned aerial vehicle 300 (figs. 1&3) capable of supporting said synthetic vision system (305, 306, 307, 311 on aircraft; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67); - (c) a remote pilot 102 operating said ground station 400 (figs. 1&4; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67); - (d) a communications link between said unmanned aerial vehicle 300 and said ground station 400; e) a system onboard said unmanned aerial vehicle 300 for detecting the presence and position of nearby aircraft (305, 306, 307, 311 on aircraft) and communicating this information to said remote pilot 102 (col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67); whereas said remote pilot uses said synthetic vision system (305, 306, 307, 311 on aircraft) to control said unmanned aerial vehicle 300 during at least selected phases of the flight of said unmanned aerial vehicle. Margolin did not disclose that the vehicle is flown using an autonomous control system. However, Duggan teach of a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: a ground station controlling an unmanned aerial vehicle (sec. 0352, 00353), wherein during phases of a flight of an unmanned aerial vehicle (UAV, sec 0318, 0322, 0353) when a synthetic vision (sec. 0356, 0365, 0388, 0390) is not used to control said unmanned aerial vehicle said unmanned aerial vehicle is flown using an autonomous control system (autopilot, sec 0346 to 0350, 0390-0329). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Margolin as taught by Duggan for the purpose of incorporating an autopilot to ensure smooth transitions (Duggna abstract, sec 0014, 0085, 0086). The different embodiments in both prior arts are combinable as it would be obvious to ne having ordinary skill in the art. Regarding claim 2, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the system of claim 1 whereby said selected phases of the flight of said unmanned aerial vehicle comprise: Application/Control Number: 11/736,356 Art Unit: 3664 Page 4 (a) when said unmanned aerial vehicle is within a selected range of an airport or other designated location and is below a first specified altitude; (b) when said unmanned aerial vehicle is outside said selected range of an airport or other designated location and is below a second specified altitude. Regarding claim 3, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the system of claim 1 further comprising a system onboard said unmanned aerial vehicle for periodically transmitting the identification, location, altitude, and bearing of said unmanned aerial vehicle. Regarding claim 4, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the system of claim 1 further comprising a system onboard said unmanned aerial vehicle for providing a communications channel for Air Traffic Control and the pilots of other aircraft to communicate directly with said remote pilot. Regarding claim 5, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: - (a) a ground station equipped with a synthetic vision system; - (b) an unmanned aerial vehicle capable of supporting said synthetic vision system; - (c) a remote pilot operating said ground station; - (d) a communications link between said unmanned aerial vehicle and said ground station; - e) a system onboard said unmanned aerial vehicle for detecting the presence and position of nearby aircraft and communicating this information to said remote pilot; whereas said remote pilot uses said synthetic vision system to control said unmanned aerial vehicle during at least selected phases of the flight of said unmanned aerial vehicle, and during those phases of the flight of said unmanned aerial vehicle when said synthetic vision system is not used to control said unmanned aerial vehicle said unmanned aerial vehicle is flown using an autonomous control system, and whereas the selected phases of the flight of said unmanned aerial vehicle comprise: - (a) when said unmanned aerial vehicle is within a selected range of an airport or other designated location and is below a first specified altitude; - (b) when said unmanned aerial vehicle is outside said selected range of an airport or other designated location and is below a second specified altitude. Margolin did not disclose that the vehicle is flown using an autonomous control system. However, Duggan teach of a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: a ground station controlling an unmanned aerial vehicle (sec. 0352, 00353), wherein during phases of a flight of an unmanned aerial vehicle (UAV, sec 0318, 0322, 0353) when a synthetic vision (sec. 0356, 0365, 0388, 0390) is not used to control said unmanned aerial vehicle said unmanned aerial vehicle is flown using an autonomous control system (autopilot, sec 0346 to 0350, 0390-0329). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Margolin as taught by Duggan for the purpose of incorporating an autopilot to ensure smooth transitions (Duggna abstract, sec 0014, 0085, 0086). The different embodiments in both prior arts are combinable as it would be obvious to ne having ordinary skill in the art. Regarding claim 6, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the system of claim 5 further comprising a system onboard said unmanned aerial vehicle for periodically transmitting the identification, location, altitude, and bearing of said unmanned aerial vehicle. Regarding claim 7, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the system of claim 5 further comprising a system onboard said unmanned aerial vehicle for providing a communications channel for Air Traffic Control and the pilots of other aircraft to communicate directly with said remote pilot. Regarding claim 8, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose a method for safely flying an unmanned aerial vehicle as part of a unmanned aerial system equipped with a synthetic vision system in civilian airspace comprising the steps of: - (a) using a remote pilot to fly said unmanned aerial vehicle using synthetic vision during at least selected phases of the flight of said unmanned aerial vehicle, and during those phases of the flight of said unmanned aerial vehicle when said synthetic vision system is not used to control said unmanned aerial vehicle an autonomous control system is used to fly said unmanned aerial vehicle; - (b) providing a system onboard said unmanned aerial vehicle for detecting the presence and position of nearby aircraft and communicating this information to said remote pilot. Page 7 Art Unit: 3664 Margolin did not disclose that the vehicle is flown using an autonomous control system. However, Duggan teach of a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: a ground station controlling an unmanned aerial vehicle (sec. 0352, 00353), wherein during phases of a flight of an unmanned aerial vehicle (UAV, sec 0318, 0322, 0353) when a synthetic vision (sec. 0356, 0365, 0388, 0390) is not used to control said unmanned aerial vehicle said unmanned aerial vehicle is flown using an autonomous control system (autopilot, sec 0346 to 0350, 0390-0329). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Margolin as taught by Duggan for the purpose of incorporating an autopilot to ensure smooth transitions (Duggna abstract, sec 0014, 0085, 0086). The different embodiments in both prior arts are combinable as it would be obvious to ne having ordinary skill in the art. Regarding claim 9, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the method of claim 8 whereby said selected phases of the flight of said unmanned aerial vehicle comprise: - (a) when said unmanned aerial vehicle is within a selected range of an airport or other designated location and is below a first specified altitude; - (b) when said unmanned aerial vehicle is outside said selected range of an airport or other designated location and is below a second specified altitude. Regarding claim 10, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the method of claim 8 further comprising the step of providing a system onboard said unmanned aerial vehicle for periodically transmitting the identification, location, altitude, and bearing of said unmanned aerial vehicle. Regarding claim 11, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the method of claim 8 further comprising the step of providing a system onboard said unmanned aerial vehicle for providing a communications channel for Air Traffic Control and the pilots of other aircraft to communicate directly with said remote pilot. Regarding claim 12, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose a method for safely flying an unmanned aerial vehicle as part of a unmanned aerial system equipped with a synthetic vision system in civilian airspace comprising the steps of: - (a) using a remote pilot to fly said unmanned aerial vehicle using synthetic vision during at least selected phases of the flight of said unmanned aerial vehicle, and during those phases of the flight of said unmanned aerial vehicle when said synthetic vision system is not used to control said unmanned aerial vehicle an autonomous control system is used to fly said unmanned aerial vehicle; - (b) providing a system onboard said unmanned aerial vehicle for detecting the presence and position of nearby aircraft and communicating this information to said remote pilot; whereas said selected phases of the flight of said unmanned aerial vehicle comprise: (a) when said unmanned aerial vehicle is within a selected range of an airport or other designated location and is below a first specified altitude; (b) when said unmanned aerial vehicle is outside said selected range of an airport or other designated location and is below a second specified altitude. Margolin did not disclose that the vehicle is flown using an autonomous control system. However, Duggan teach of a system for safely flying an unmanned aerial vehicle in civilian airspace comprising: a ground station controlling an unmanned aerial vehicle (sec. 0352, 00353), wherein during phases of a flight of an unmanned aerial vehicle (UAV, sec 0318, 0322, 0353) when a synthetic vision (sec. 0356, 0365, 0388, 0390) is not used to control said unmanned aerial vehicle said unmanned aerial vehicle is flown using an autonomous control system (autopilot, sec 0346 to 0350, 0390-0329). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Margolin as taught by Duggan for the purpose of incorporating an autopilot to ensure smooth transitions (Duggna abstract, sec 0014, 0085, 0086). The different embodiments in both prior arts are combinable as it would be obvious to ne having ordinary skill in the art. Regarding claim 13, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the method of claim 12 further comprising the step of providing a system onboard said unmanned aerial vehicle for periodically transmitting the identification, location, altitude, and bearing of said unmanned aerial vehicle. Regarding claim 14, Margolin (abstract; figs. 1-7; col. 3, lines 8-67; col. 4, lines 1-67; col. 5, lines 1-67) in view of Duggan disclose the method of claim 12 further comprising the step of providing a system onboard said unmanned aerial vehicle for providing a communications Application/Control Number: 11/736,356 Page 10 Art Unit: 3664 channel for Air Traffic Control and the pilots of other aircraft to communicate directly with said remote pilot. Communication 3. Any inquiry concerning this communication or earlier communications from the examiner should be directed to RONNIE MANCHO whose telephone number is (571)272-6984. The examiner can normally be reached on Mon-Thurs: 9-5. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Tran Khoi can be reached on 571-272-6919. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000. /Ronnie Mancho/ Primary Examiner, Art Unit 3664 /Ronnie Mancho/ Primary Examiner, Art Unit 3664 Application/Control Number: 11/736,356 Page 11 Art Unit: 3664