Lockheed's Polecat UCAV Demonstrator Crashes

Aviation Week & Space Technology 03/19/2007, page 44 Amy Butler Washington

Polecat UAV has been labeled a total loss after December crash

Printed headline: Roadkill

Lockheed Martin's Polecat unmanned aerial vehicle demonstrator has crashed months after accomplishing only three flight tests.

The incident takes the steam out of the company's strategy to fund its own project to keep pace with--and potentially surpass--work at Northrop Grumman and Boeing on government-funded *UAV* programs. Northrop Grumman and Boeing have been beneficiaries of the Pentagon's multibillion-dollar on-again off-again program to develop a combat UAV for the Navy and Air Force. And, both companies have flying demonstrators of varying maturity as a result of this support.

Lockheed Martin has no major government funding for its UAV efforts. But, company officials said that with Polecat they hoped to surpass the knowledge base of the nascent UAVs at rival companies and secure a foothold in the next-wave of Pentagon purchasing in this area--particularly for the Air Force's future bomber.

Lockheed Martin officials took months to acknowledge the crash of its Polecat UAV development aircraft. Credit: LOCKHEED MARTIN

THE POLECAT CRASH occurred Dec. 18, 2006, at the Air Force's Nevada Test and Training Range. Lockheed Martin officials say they could not discuss the crash any earlier due to a thenongoing Air Force-led investigation that was only recently completed. The company notes that it had no formal customers for Polecat, but was restricted by government rules from discussing the incident since it occurred on a federal test range.

The 90-ft. wingspan demonstrator, which cost them more than \$30 million to develop, was declared a total loss as a result of the crash. The company is attributing the incident to an "irreversible unintentional failure in the flight termination ground equipment," though it was unable to say whether human error or a technical malfunction was a cause. The aircraft was, however, "in full control and performing well" when its automatic "fail-safe flight termination mode" activated, according to a Lockheed Martin statement. A company official says a failsafe, which prevented operators from recovering control of the UAV, initiated "in seconds," rendering them powerless as the aircraft dove to the ground.

"The fail-safe mode is designed to irreversibly terminate flight to ensure that systems do not deviate from the range into civilian airspace," according to a company statement. "There was an irreversible unintentional failure in the flight termination ground equipment at the Nevada Test and Training Range. We believe the test range has corrected the potential for a similar circumstance to occur again." Company officials say the Polecat validated rapid prototyping methods and that aerodynamic performance was "better than expected." They add, the flight termination software "performed exactly as expected."

The incident is an embarrassment for Lockheed Martin, which has been criticized for ignoring the UAV business and focusing too much on its booming manned fighter work on the F-22 and F-35. The company's efforts to conduct *UAV* testing fizzled after the termination of its DarkStar UAV program; one of its prototypes crashed in April 1996.

Yet, the company is not alone when it comes to embarrassing UAV incidents. Early in the development of the Global Hawk, a Northrop Grumman UAV, operators at one test range inadvertently engaged a self-destruct code that was picked up by a prototype UAV flying at a different range. The aircraft's extraordinarily high altitude gave it line-of-sight to both range sites. So, the UAV wound up in a self-destruct spiral and was declared a total loss.

For Lockheed Martin, Polecat's unveiling was the high point of the aeronautics sector's news briefings during last year's Farnborough air show in the U.K. (AW&ST July 24, 2006, p. 64). Frank Cappuccio, executive vice president for Lockheed Martin Skunk Works, showed a video clip during that briefing to reporters of the early Polecat flights. He touted the air vehicle as a demonstrator for new technologies in the areas of composites, fabrication and twisting strut designs to morph the UAV's wings in flight.

Polecat was the first public attempt by a company to demonstrate the effectiveness of a tailless Horton-wing design at altitudes in excess of 60,000 ft. The design, similar to the B-2's, is inherently stealthy because it lacks a tail. Skunk Works had wanted to experiment with it in high altitudes where the air is thin. Yet, with only three flights under its belt, the aircraft never climbed above 15,000 ft. to prove itself at high altitudes as planned. Contrail suppression is also a problem the company hoped to tackle via its work on Polecat. Despite its high altitude, the U-2 has been plagued by contrails during its decades of operation. And, effective visible contrail suppression will augment the stealth qualities afforded through design and coatings. Polecat was not coated with stealthy materials, but the tailless design and angled engine inlets provided stealthy qualities to the demonstrator.

Frank Mauro, director of Lockheed Martin's unmanned systems at Skunk Works, said last year that work on Polecat would feed into the company's evolving designs for the Air Force long-range strike aircraft concept as well as needs beyond Northrop Grumman's Global Hawk for a future highaltitude UAV for intelligence collection. "Many lessons learned on this project will be applicable to future efforts, including Long Range Strike," according to the company statement.

The aircraft was designed to hoist 1,000 lb. of payload. It was powered by two FJ44-3E Williams International engines. Work began on Polecat in 2003 and it was ready for flight 18 months later.