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Navigation fixed from range differences to three stations plus
an additional piece of information are investigated. It is shown
that if the additional information is the navigator altitude, or
the range difference to a fourth station, the computation of the
navigation fix is reduced to finding the roots of a quadratic. If the
additional information is the range to another station, or that
the navigator is on the Earth ellipsoid, the fix can be obtained
by solving a quartic. By emphasizing the underlying geometric
interpretations, these fixes and their simple solutions are made
clear. The derivations also show that the same solution algorithms
are applicable if the basic navigation measurements are range

suns instead of range differences.
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INTRODUCTION

Navigation systems such as LORAN or DECCA (1]
use differences in the times of arrival of a radio signal
at different stations to determine a navigation position.
It is well known that time of arrival differences at a
pair of stations locate the navigator on a hyperboloid
of revolution with foci at the stations; that time arrival
differences at three stations place the navigator ont he
curve of intersection of two such hyperboloids. To fix
the position at a point on this curve of intersection
requires additional information. Some examples of
such information are: the position is on the surface
of an ellipsoidal Earth or another station exists which
provides additional signal time of arrival differences.
Navigation positions located in this way at the
intersections of hyperboloids and other surfaces may
be called hyperbolic position fixes. Usually, computing
a hyperbolic position fix requires an iterative algorithm
with its attendant inefficiency and convergence
problem [1]. It is shown in the following that the
computation of these hyperbolic position fixes can be
reduced to the solution of a quadratic or a quartic
equation. The simplicity of these solutions comes
from the use of station baseline planes as references
and from exploring the geometrical properties of
intersection of hyperboloids. The advantages of such
references was first noted in a related navigation
problem [2].

Measurements which are sums of signal times of
arrival are also common. These measurements involve
ellipsoids and lead to the elliptic position fixes. It is
obvious from our derivation below that the algorithms
derived for hyperbolic position fixes are also applicable
to elliptic position fixes.

NAVIGATION POSITION RELATIVE TO THREE
STATIONS

Fig. 1 shows a navigation position relative to three
stations A, B, and C. A set of local right-handed
orthogonal axes is chosen as shown. The origin is at
one of the stations, one axis is along a station baseline,
and another axis is orthogonal to the two station
baselines, or the station plane.

Let V' be the signal velocity, T,, =T, — T and
T.. =T, — T, be the differences in the times of signal
arrival at the station pairs A, B and A, C, respectively.
From Fig. 1, one has

Vx2+y2+22—/(x=b)2 +y2 +22

= V*Tab = Rab (1)
VX2 +y2 4+ 22— \/(x~cx)2+(y—cy)2+z2
=V T = Rae 0

where R, and R, are range differences from the
navigation position to the stations, converted from
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Fig. 1. Navigation position referenced to local coordinates defined

by station basclines.

the measured time of arrival differences. Transposing
the first terms to the right-hand sides of (1) and (2),
squaring and simplifying, one obtains

R%, —b? +2bxx = 2R \/x2+y2 + 22 (3)
Rﬁc—c2 +2c,xx +2¢c,xy =2Rac\ /X2 +y2 + 22 (4)

c2 + c2 are the lengths of station

baselines. These two equations, when squared, can be
readily recognized as representing two hyperboloids of
revolution with foci at A, B and A, C, respectively.

Note that for measurements consisting of sums
instead of differences of times of arrival, one would
have a set of equations similar to (1) and (2) with
positive signs between the radicals and with R,
and R, interpreted as range sums instead of range
differences. Squaring these new equations would
give a set of equations identical to (3) and (4),
although representing ellipsoids of revolution rather
than hyperboloids. Thus all derivations below which
originate from (3) and (4) are applicable to range
sum measurements as well as range difference
measurements.

Let us consider, without loss of generality, that
the range difference R, is not equal to zero.! Then
equating (3) and (4) and simplifying, one obtains

where b and ¢ =

y=g*x+h )

1R, = 0 implies x = b/2. In that case one can follow a similar
procedure and express (13) below in terms of y instead of x. But a
separate treatment is unnecessary because one can choose a baseline
such that R;; = 0, unless R, = R, = 0. In the latter situation the
problem is trivial since the navigation position will be at an equal
distance to the three stations.
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where
§= {Rac*(b/qu)_.cx}/cy )
h ={c® = R%, + Rac * Rap(1 — (b/Ras)H)} [2¢y. (T)
Substituting (5) into (3), one obtains
z=%vdxx2+exx+f ®
or
2=dsx’+tesx+f ©
where
d=—{1-(/Ras)’ +g°} 10 -
e=bx{1—(b/Rap)*} —2g+h @11)
f = (R /4)+{1- (b/Ras)’Y* - 1. (12)

These equations admit the following geometric
interpretations. Equation (5) defines a plane
orthogonal to the station baselines. The navigation
position must lic in this plane, or the curve of
intersection of the two hyperboloids is a plane curve.
Equation (8) says this curve must be symmetrical
with respect to the station plane. Equation (9) says
the projection of this curve onto the X — Z plane is
an ellipse (d < 0) or a hyperbola (d > 0). A simple
expression for this curve of intersection can be
obtained by a straightforward transformation of
coordinate axes such that the new origin is on the
plane defined by (5) and the new Y-axis is orthogonal
to the plane. We do not go into the details but will
point out that, as its projection discussed above,
this curve is an ellipse or a hyperbola depending on
whether d < 0 or d > 0. From (10) it can be seen
that for range sum measurements, d < 0 and the
curve is an ellipse, being the intersection of a plane
and an ellipsoid of revolution. For range difference
measurements this curve is the intersection of a
plane and a hyperboloid of revolution, and may be a
hyperbola, or an ellipse. It can be seen from (6) and
(10) that an ellipse would result if the angle subtended
by the two baselines is small.

One may now write the navigation position
vector as follows which depends on a single unknown
parameter X,

R=xxI+(@g*x+h)j+ J/d=x2+exx + fk.

As discussed above, this vector defines a hyperbola
(d > 0) or an ellipse (d < 0) with mirror symmetry with
respect to the station plane.

13)

POSITION FIX WITH ADDITIONAL INFORMATION

The preceding section shows that when time of
arrival differences or sums to three stations are known,
an ellipse or a hyperbola on which the navigator lies
can be computed. To fix the navigation position on this
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ellipse or hyperbola, additional information is required.
Among the commonly available information, some

will restrict the position on another plane; others will
place it on a second degree surface. For the former,
the navigation position becomes the solution of a
quadratic equation. This is easy to understand from
geometry. The intersection of this new plane with the
plane of the hyperbola or ellipse is a straight line. And
the intersection of this first degree straight line with

a coplanar second degree curve such as a hyperbola

or an ellipse is a root of a quadratic equation. For the
latter, the intersection of the plane of the hyperbola or
ellipse with a second degree surface is a second degree
planar curve. Thus the navigation position is at the
intersection of two coplanar second degree curves, or
the root of a quartic equation.

Expressions for these quadratic and quartic
equations are derived below. Before proceeding,
however, it is to be noted that in the derivations
that led to (13) we removed radicals by squaring
appropriate expressions. This process can introduce
extraneous solutions. Only those roots which satisfy
the measurement equations (1) and (2) are admissible
navigation solutions. That extraneous roots may
exist can be seen from (6), (7), (10)-(12) that the
parameters d, e, f, g, h and therefore the vector R
as given in (13) remain unchanged if R,; and R, are
replaced by —R,p and —R,,.

A. Altitude of Navigator Above Station Plane Known

An example of this situation is the local (flat Earth
approximation) navigation of an aircraft equipped
with an altimeter. Since the altitude z is known, x is
obtainable as the solution of (9), i.e.,

dxx’>+exx +(f —2z%) =0. (%a)
Geometrically the navigation position is at the
intersection of the plane z =known altitude with a
hyperbola or an ellipse and where two admissible
solutions corresponding to the two roots of (9a)
generally exist. This two-fold ambiguity can often be
resolved if some knowledge of the general location of
the navigator is available.

B. Signal Arrival Time Difference or Sum to Another
Station Known

This is the problem of the hyperbolic or elliptic
position fix; i.e., the navigation position is at the
intersection of three hyperboloids or ellipsoids. For this
case, consider another station C’ and the associated
timing measurement T, are available. The stations A,
B, C provide another set of reference and the timing
measurements 7, and T, define another plane on
which the navigator lies. An alternative expression

for the navigation position vector referenced to the
stations A, B and C' is, similar to (13),

dx2+exx+ f'k'

(14)
where the primed quantities are computed just like the
corresponding unprimed quantities, with the station C
replaced by the station C'. Taking the scalar product of
(13) and (14) with the unit vector j' and equating the
results, one obtains

R=x+«i+ (g +x+h)*] %

g xx+h =(gxx+h)(j*j)
£/dsx2+exx + f*(k«])
or, squaring and simplifying

p*x2+q*x+r=0

(15)
where
p=dx(k+])—{g' —g+(* )Y (16)
q=ex(k+])—2{g' —gx(FxIIHW —hx(7*])}
7
r=fxlx]) — {0 —hx(J*])) (18)

With x known as the solution of (15), y and z follow
from (5) and (8), respectively. As discussed already,
for the present situation, the navigation position is

at the intersection of a straight line and a hyperbola

or an ellipse, and generally has two solutions. If the
fourth station C’ is not in the plane of the stations

A, B and C, these two solutions correspond to two
values of x which are the two roots of (15). The +
sign of z in (8) can be resolved, because symmetries
with respect to the A, B, C and A, B, C' planes are
incompatible. On the other hand, if the four stations
are coplanar, the two planes containing the navigation
position and defined by the two sets of references must
intersect at a line parallel to the Z-axis, (15) must have
double roots and the two possible navigation positions
are mirror images with respect to the station plane
corresponding to the + signs of z in (8).

C. Navigator on Ellipsoid of Revolution

To a very good approximation, the surface of the
ocean is an ellipsoid of revolution. Thus this is the
situation for the navigation of ships. Since a sphere
is a special case of an ellipsoid, this also includes
the special case that the range of the navigator to
another location is known, the location of interest
may be another station or the center of the Earth. As
discussed already, the navigation position is now at the
intersection of an ellipse with a coplanar hyperbola
or another ellipse, and it is obvious from geometry
that two or four points of intersection may exist. The
quartic that governs these intersections can be derived
as follows. Let the position vectors from the two foci
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of the ellipsoid to Station A be P and Q, respectively
(Fig. 1). From the defining property of an ellipsoid of
revolution, one must have

V@ +Ryx@+Ry+\/@+R+@+R)=2a (19)

where a is the semimajor axis of the ellipsoid.
Transposing and squaring twice, one obtains

{(P?-Q*-4a%) +2(P-0)+R)?
=162 (Q* +20* R+ R?)

where P, Q, and R are the lengths of the vectors

B, O, and R, respectively. By expressing the known
vectors P and @ in terms of their components along
the X — Y — Z axes defined in Fig. 1, it can be readily
seen that the above equation can be rearranged as
follows

usx>+vrx+w =im*(n*x +m)
(20)
where
u = {(beta)® + dxs2}/4a* — (1 +g* +d)
v = {(alpha) * (beta) + e + 52} /4a*
— (29 +2gxq, te+2gxh)
w = {(alpha)? + 4f *s2} /164>
—(Q*+2hxq, +h* + f)
=5, * (alpha)/4a2 +2q,
= —s, *(beta)/2a°
alpha = P2 — Q% —4a® + 2s,xh
beta =5, +g*5y

qx,qy,q. and sy,5,,s, are components
of vector @ and S = P — { along
X, Y, and Z axes, respectively.

Notice that if the ellipsoid becomes a sphere, i.e., for
the special case that the range of the navigator to a
known location is given, then n = 0, m = 2q,, the first
terms in the expressions for u and v vanish, that for w
becomes @2, and the algebra simplifies considerably.
Squaring (20), one obtains the following quartic for x

@ —dxn®) + x3Quxv —exn®—2d+mxn)
+x2(v? + 2usw — f¥n® — dxm? —2exmxn)
+xQ2viw =2f xmxn—exm?)+ (W — fxm?) =0
2D

When x is known, y and z follow from (5) and (8).
Note that the quartic may have four distinct real roots.
These, together with the + values of z means there are
eight possible combinations. However, as discussed

before, only two or four of these are admissible
navigation positions. The others are extraneous
solutions which do not satisfy the measurement
equations (1) and (2), or the auxiliary information (19).

INDEPENDENT BASELINES

Sometimes different station baselines are
independent, i.c., the station clocks are synchronized
only in pairs. In that case, although two sets of time
of arrival differences, say T, and T, still constrain
the navigation position at the intersection of two
hyperboloids, the curve of intersection is no longer
a planar curve, and the simple results obtained in
previous sections no longer apply. However, as long as
there is a set of three synchronized stations, additional
measurements from independent baselines do provide
simple solutions. Obviously, if an additional set of
three synchronized stations exists, the navigation fix is
again given by the roots of a quadratic. Likewise, if an
additional independent baseline exists, the navigation
fix is given by the roots of a quartic. The derivations
parallel those in B and C above and are not reported
here.

COMPUTATION FLOW

To illustrate the solution algorithm, the
computational flow for a navigation fix on the Earth
ellipsoid is presented in Fig. 2. The computations for
other fixes are similar, but simpler, particularly when
the solution is governed by a quadratic instead of a
quartic.

DISCUSSION

It is shown in the above that several problems of
interest in computing hyperbolic (elliptic) navigation
fixes can be reduced to the solution of a quadratic or
quartic equation. The solution of a quadratic is trivial.
Analytic solution of a quartic is available, although
some algebra is involved, but it is a simple matter to
program the algorithm on a computer, as has been
done by the author. The simplicity of the solutions
results from the recognition that the intersection of
two hyperboloids (ellipsoids) of revolution with a
common focus is a hyperbola or an ellipse symmetrical
with respect to the plane of the foci. By exploring the
geometrical interpretations the nature of the navigation
fixes are clarified. When the navigation position is
governed by the quadratic, generally two admissible
navigation positions exist and the ambiguity must be
resolved from other information such as knowledge of
the general whereabouts of the navigator. The quartic
may have four distinct real roots corresponding to four
possible navigation positions. Frequently some are
extraneous roots which can be rejected by showing that
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Set up local coordinate axes referenced

Station vectors | to station baselines. The baseline
in global vectors in logcal coordinates age
cgorginates: Ro-Ra=b*1, Rc—Ra=cx*i+c¥*j
Ra,Rpb,Rc ——-| Station A is the origin; 1, jJ, are

orthogonal unit vectors along the axes,
obtainable immediately by inverting the
above equations. The navigator local

coordinates are (x,y,z), to be computed

Additional
Baseline Unit information:
parameters xegtors Earth eilig§oid:
b,cx,cy i, ], Foci Rp,Rq in
— = global
Navigation Compute coefficients anxeﬁi P=Ra-Rp, ‘/// coordinates
measurements: |d,e,f,g,h relating Q=Ra-Rq to Semi-major axis
range—-diffs coordinates y,z to x _local axes: - ‘a'
Rab,Rac [Egs. (6),(7),(10), P=px*i+py*j+pz*k
(11),(12) ] G=qx*1+qy*J+qz*K
d,e,f,g,h P2,82,9x,9y,4qz,
Sx=px—qx,
Sy=py—Qy,
Sz=pz—-Qz
Compute coefficients of
> quartic for x e
[Egs. following (20), Eq.(21)]

Quartic coefficients

[Quartic SolverJ

Real roots, x(numberg4d)

Cvcle through the steps below
for each distinct real root

¥
Obtain other coordinates
“lv=g*x+h, 2=z X2+e*x+
'

Perform false fix tests:
Do x,y.,z give rise to correct range difference
measurements? [Are Eqgqs. (1) & (2) satisfied?]
Is (x,y.2) located on earth ellipsoid?
[Is Eq. (9) satisfied?]. This test usually
discriminates the t sign for z.

Unless both tests are satisfied, the set (x,y,z)
is rejected as a false fix.

Candidate navigator fix in local coordinates, (Xx,y,z).
When there are more than one candidate fixes (maximum

numberg4), the true fix has to be resolved from other
information. The navigator fix in global coordinates
is

—= -> - >
Ra+x*i+y*j+z*k

Fig. 2. Computation flow.
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