Requirements for Meeting an Developing Sense & Avoid Equivalent Level of Safety

UVS Tech 2006 Salon-de-Provence, France 17-19 January 2006

Presenter: Russell Wolfe
Access 5 Technology IPT Lead
Modern Technology Solutions, Inc

HALE UAS IN the N

UAS Collision Avoidance Initiatives NASA Dryden Flight Research Center

ERAST: 1993 - 2003

- Sensor Requirements
- Sensor Concept Development
- Flight Test Demonstrations
- Cooperative
- Radar

EO/IR

- Requirements Development
- Safety Analysis
- Simulation Tools
- Flight Test Demonstrations
- Standards Development

Collision Avoidance Work Package **ACCESS 5**

Work Package Objectives:

- Define Equivalent Level of Safety (ELOS) for Sense and Avoid.
- Develop collision avoidance (CA) requirements for Unmanned Aircraft Systems (UAS); validated through analysis, simulation, and flight demonstration.
- Provide inputs to the FAA and RTCA Special Committee 203 "Unmanned Aircraft Systems"

Team Members:

- NASA Dryden & Langley
- Northrop Grumman
- Lockheed Martin (Ft. Worth)
- MITRE

- Modern Technology Solutions
- Aurora Flight Sciences
- Federal Aviation Administration

ACCESS 5 Collision Avoidance Work Package 5 Major Task Areas

<u>CA Task 1</u>:
 <u>Define ELOS for See & Avoid</u>

<u>CA Task 2:</u>
 <u>Develop CA Requirements</u>

<u>CA Task 3:</u> **Perform CA Safety Analysis**

<u>CA Task 4:</u> **Develop CA Simulation Tool**

- <u>CA Task 5:</u> Perform CA Flight Test

Collision Avoidance Work Package

Task Relationships

Task 1: ELOS Definition Document

- of safety, as it pertains to see and avoid Objective: To present a recommended approach for defining an equivalent level
- Deliverable Content:
- Current regulatory / operational environment
- 14 CFR 91.113(b), Right of Way Rules
- 14 CFR 91.111, Operating near other aircraft
- Basis for having to meet an Equivalent Level of
- 14 CFR 21.21(b), Certification Procedures
 FAA Order 8110.4C, Equivalent Level of Safety Findings
- Potential Approaches & Methodologies for defining ELOS
- 1) Statistical Approach
- 2) Performance / Rule Based Approach
- Recommended Definition and Measures of Performance for Sense and Avoid ELOS

Status: Delivered to FAA on 23 Nov 2004

Task 1: ELOS Definition Document Definition and Measures of Performance

- avoid collisions." conflicting traffic and the ability to take the appropriate action necessary to capability to provide situational awareness with adequate time to detect Definition: "Equivalent level of safety to manned aircraft see-and-avoid" is the
- Measures of Performance:

Task 2: Develop Collision Avoidance Reqmts

- performance requirements for HALE UAS. Objective: To develop the collision avoidance operational, functional, and
- <u>Deliverable Content:</u>
- Notional CA Subsystem Description
- Subsystem Architecture
- Interfaces
- Operational Requirements
- Functional Analysis
- List of Collision Avoidance Functions
- Functional Flow Block Diagram
- Functional Requirements
- Performance Requirements
- Design Guidelines
- Performance Trade-offs
- Verification Method (Analysis, Inspection, Simulation/Modeling, Demo, Test)
- Status: Intend to release Revision 6.0 in February 2006 (All previous revisions have included FAA input and review)

Task 2: Develop Collision Avoidance Reqmts Collision Avoidance Functions

Task 2: Develop Collision Avoidance Reqmts Functional Flow Block Diagram

Task 2: Develop Collision Avoidance Reqmts

Function 1: Detect Traffic Requirements (Example)

- Detect Traffic - The UAS shall detect traffic within its surveillance volume.
- F1.1: Minimum Detect Time The CAS shall detect traffic with sufficient time remaining for successful performance of all required collision avoidance functions
- F1.2: Detection Range The CAS shall detect cooperative traffic at a range of at least xx nautical miles. (see Table F1.2)
- azimuth FOR of at least +/-110° referenced from the flight path of the UA F1.3: Azimuth Field of Regard - The CAS shall detect cooperative traffic within an
- elevation FOR of at least +/-15° referenced from the flight path of the UA. F1.4: Elevation Field of Regard - The CAS shall detect cooperative traffic within an
- volume at a rate that supports the track probability guideline (see F2.3). F1.5: Detection Probability - The CAS shall detect cooperative traffic in the surveillance
- xx hertz. (see Table F1.6) F1.6: Detection Rate - The average CAS detection rate shall be equal to or greater than
- F1.7: Detection Accuracy The CAS shall detect cooperative traffic with an accuracy of TBD ft for range determinations, and TBD ft for altitude determinations
- all detected traffic F1.8: False Detection/Nuisance - False detections shall account for less than TBD% of

Task 3: Perform Safety Analysis

- avoidance for UAS Objective: To develop a method for evaluating the safety of collision
- and logic risk ratios Establish equivalent level of safety to manned aircraft using event/fault trees P(collision UAS)

Risk Ratio = $\frac{\Gamma(\text{consion UAS})}{P(\text{collision manned AC})} \le 1$

Accomplishments:

- Developed visual acquisition model based on Lincoln Lab's SEE1 model
- Developed surveillance error models for GPS/ADS-B
- for the primary event tree probabilities Performed multiple assessments using results from the CA simulation tool
- Supported requirements development in the areas of Surveillance Maneuver times, etc. Effectiveness, Detection Accuracies, Detection times, Reaction times,
- Status: Currently finalizing final report and lessons learned

Task 3: Perform Safety Analysis

Generic Event/Fault Tree for Collision Probability Estimation

- provide a consistent basis for comparison: Generic Event/Fault Tree established to
- 1. Manned aircraft using see & avoid

Task 4: Develop CA Simulation Tool

- via Simulation as well as support the CA Flight Test activities Objective: To assess the validity of the proposed CA Functional Requirements
- Allows characterization of:
- Ownship Vehicle Dynamics
- CA Equipment and Software
- **Encounter Scenarios**
- Accomplishments:
- Duplicated Tech Demo Scenarios
- Flight Test Risk Reduction
- Improve Probability of Obtaining Useful Data
- Validated Against the System Integration Lab (SIL)
- Flight Test Risk Reduction
- CCA Component Models
- Sensitivity Analyses performed
- Status: Currently analyzing flight test data and validating the CA simulation tool.

Task 4: Develop CA Simulation Tool

Simulation Features

- MATLAB™/Simulink® Simulation Environment
- Multi-Vehicle Simulation (4 Aircraft Max)
- Generic Aircraft Models Represent Any Fixed Wing Aircratt
- Each Aircraft = 1 Parameter File
- Scripts Trim & Initialize Aircraft to Any Encounter Geometry
- Modular Components
- Blocks Can be Copied and/or Swapped Out for Software Upgrades (e.g. CA Sensors, Maneuver Advisory)
- Capable of Batch Runs for Parametric Variation Studies
- Uses Microsoft Excel Input Dataset
- Multiple Plot Outputs Available
- PC Portable (< 37 MB)
- Can Run in Both Fast Sim-Time & Soft Real-Time

Task 5: Perform CA Flight Test

OPV - Proteus

 Objective: To collect cooperative collision avoidance data to validate the CA simulation tool

Accomplishments:

- Developed Interface Control Document
- Developed System Integration Lab (SIL)
- Developed CA algorithms
- Developed CA software and human interface tool
- Intruder Gulfstream III
- Procured CA sensors and integrated them onto Proteus platform
- Developed CA scenarios and test cards
- Post-processed flight data and prepared for data analysis effort
- Status: Successfully completed over 50 collision scenarios during the last two weeks of September 2005

Task 5: Perform CA Flight Test

Test Scenarios

6	51	4	3	2	_1	Scenario #	
-500	0	0	0	0	0	Climb Rate (fpm)	HOST
180	180	-90	0	10	0	Δψ (degrees)	INTRUDER
0	0	0	500	0	0	Climb Rate (fpm))ER
√ _{N/6} ∯-minterminemen	elemente de la constante de la	**************************************	consider				PICTORIAL

- Test scenarios included multiple collision geometries:
- Co heading, Intruder overtaking
- Low aspect, co-altitude
- Co heading, Intruder climbing
- Abeam, co-altitude
- Head-on, co-altitude
- Head-on, descending

				C	Configuration	ration		
			TG	GC & AGA	3A		Н	۲T
оринительний применент (применент) применент (применент) применент (применент) применент (применент) применент	Buffer	6	4	2	0	4	0	0
	Link Delay	0	0	0	0	2	0	2
Scenario								
I. Co-Heading, Co-Alt, Intruder Overtaking	Overtaking				1		2	
2. Low Aspect, Co-Alt					1		2	
3. Co-Heading, Intruder Climbing	າg				1		2	
. Abeam, Co-Alt		_	1	1	2	1	1	1
. Head-On, Co-Alt		_	1	1	2	1	1	1
ზ. Head-On, Descending		_	1	1	2	1	1	1

Next Steps

- Analysis and Flight Test Activities Document the results and lessons learned from the Safety
- Complete validating the CA Simulation tool
- requirements Derive practical values/ranges for the TBDs in the performance
- Utilize the validated CA Simulation tool
- Utilize the safety analysis results
- Begin Non-cooperative Collision Avoidance Activities
- Derive unique Non-cooperative performance requirements
- Perform Trade Studies and Concept Assessments
- Conduct Non-cooperative Simulation Runs and Flight Demos
- Support RTCA SC-203 on developing the Sense & Avoid Minimum Aviation System Performance Standards (MASPS)

QUESTIONS?

Russell Wolfe Modern Technology Solutions, Inc. Russell.C.Wolfe @mtsi-va.com (703) 212-8870 x126